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Abstract—A new concept of -model of a function that is a generalization of the Devolder–Gli-
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1. INTRODUCTION
1.1. Motivation

Gradient descent and fast gradient descent are perhaps the most popular numerical optimization
methods. Both methods are based on the idea of approximating the function at the initial point (the cur-
rent point of the method) by a majorizing paraboloid of revolution and on choosing the minimizer of this
paraboloid as the next point of the method. Thus, the divide and conquer principle is implemented, i.e.,
the initially hard problem is decomposed into a set of simpler problems. The second-order, quasi-Newto-
nian, cubic regularization, Chebychev’s, composite, and level methods suggest that it is not necessary to
use paraboloids of revolution in the above approach. One can use more complex functions that provide a
more accurate local model of the function at the point under examination, which ultimately gives faster
convergence of the method. There are two approaches. One of them introduces higher order derivatives
into the function model. The other approach is based on including a part of the problem formulation into
the model; e.g., if the function to be optimized is a sum of two functions, then one of them can be replaced
by a paraboloid of revolution in the model and the other function remains as it is. The second approach is
new and currently does not form a special direction of research. As far as we know, until the present time
no attempts have been made at integrating the available uncoordinated results. In this paper, we make such
an attempt. Note that, in the case of paraboloid of revolution, the solution of the auxiliary problem is typ-
ically easy; often, it can be solved using explicit formulas, i.e., exactly. In the second approach, the situa-
tion is quite different; more precisely, the auxiliary problem can usually be solved only approximately. For
this reason, we consider in this paper the case when the auxiliary problem is solved approximately.

The generic optimization problem, in which only information about the Lipschitzness of the gradient
or of the function is available, is well studied and lower and upper bounds for this problem are known
(see [1, 2]). Recently, structural optimization has gained popularity, in which a priori information about
the structure of the problem is available. Additional information about the problem makes it possible to
find new methods and improve upper bounds. In particular, the composite statement of the problem, in
which the given function is the sum of a smooth and nonsmooth functions [3] can be solved with the rate
of the fast gradient method using additional information about the nonsmooth term in the sum. More-
over, the minimum of the nonsmooth function can often be found with the rate of the fast gradient
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1086 GASNIKOV, TYURIN
method even though this is not possible for nonsmooth problems in the general case. An example is the
minimax problem, which is not smooth but for which a fast gradient method was proposed [1]. The main
purpose of this paper is to make an attempt at unifying different approaches and propose a method based
on such a unified approach that should include all earlier proposed concepts. In Section 4, we give a large
number of examples of optimization problems that can be solved using the proposed unified method. For
this purpose, we define the concept of -model, which is in essence a generalization of the definition
of Lipschitzness of the gradient or a generalization of the concept of the Devolder–Glineur–Nesterov

-oracle.
The paper is organized as follows. In Section 2, we introduce a novel concept of -oracle [4] and

discuss the concept of the -model of function and allow the auxiliary problem to be solved inexactly
[5]. In this section, we also generalize the gradient descent method for the case of dealing with the new
model. In Section 3, the results obtained in Section 2 for the gradient descent method are extended to the
fast gradient descent method. Section 4 describes the application of the methods proposed in Sections 2
and 3 within the concept of -model to various problem statements. In this section, we also show that
the proposed concept and methods make it possible to unify the results available in this direction of
research. The Appendix contains the justification of the fact that the concept of accuracy of solving the
auxiliary problem, which is adopted following Nemirovski, is quite effective, and for bounded smooth
statements of the problem is reduced to the conventional concept of function convergence (note that there
are other concepts [6–8]).

2. THE GRADIENT DESCENT METHOD WITH AN ORACLE USING THE (δ, L)-MODEL
First, we give the general formulation of the convex optimization problem [1]. Let a function

 and an arbitrary norm  in  be given. The adjoint norm is defined by

(1)

We assume that

1.  is a convex closed set.
2.  is a continuous convex function on .
3.  is bounded from below on  and attains its minimum at a certain point (not necessarily unique)

.
Consider the optimization problem

(2)

Let us introduce the concepts of prox-function and Bregman divergence [9].
Definition 1.  is called a prox-function if  is continuously differentiable on  and

 is 1-strongly convex with respect to the norm  on .
Definition 2. The Bregman divergence is

(3)
where  is an arbitrary prox-function. It is easy to verify (see [5]) that

Next, we define the -model of function [10], which is a direct generalization of the -oracle
[4, 11, 12].

Definition 3. The pair  is called a -model of the function  at the point  if the
inequality

(4)

holds for every ,
(5)

and  is a convex function in  .
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FAST GRADIENT DESCENT FOR CONVEX MINIMIZATION PROBLEMS 1087
We assume that, for , there are  and  such that at every point  there exists a -model.
Examples are given in Section 4.

Corollary 1. Take  in (4) and use (5); then

(6)

Consider the concept of inexact solution of problem described in [5].
Definition 4. Consider the problem

where  is convex. Then  is the set of all  such that

An arbitrary element in  will be denoted by .

Consider a simple consequence. Let . Then, the convexity implies that
, where . Take ; then . That is,

 implies that  is a -optimal solution. The converse is generally not true, and
throughout this paper we will essentially use the condition on the -solution from Definition 4, which is
more rigorous.

Consider a generalization of the gradient descent algorithm for problem (2) [10]. In this algorithm, we
assume that an initial point  is given,  is the number of steps of the method, and  is a constant that
has the sense of tentative “local” Lipschitz constant of the gradient at the point . At the input of the algo-
rithm are also the sequences  and , wher  is a sequence such that, for every , there
exists a -model for  at any point , and  are the errors of the solution from Defini-
tion 4, which may be zero, constant, or vary from iteration to iteration in different problems.

Note that we never explicitly use the constant  in the proposed method. We assume that ; oth-
erwise, we will set  in all the bounds below.

Let us describe the gradient descent algorithm with an oracle that uses the -model.

Algorithm

Input data:  is the initial point,  is the number of steps,  and  are sequences, and
.
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1088 GASNIKOV, TYURIN
then set

and go to the next step; otherwise, set

and repeat the current step.
Remark 1. For all , it holds that

For , this inequality holds because . For , this follows from the fact that we will exit
the inner loop, in which  is fitted, earlier than  becomes greater than . The exit from the loop is
guaranteed by the condition that a -model for  exists at every point .

We now prove an important lemma.
Lemma 1. Let  be a convex function and

Then

Proof. By Definition 4, we have

Now the inequality

and the equality

complete the proof.
Lemma 2. For every , it holds that

Proof. Consider the chain of inequalities

Inequality  follows from Lemma 1 with  and the left-hand side of (4).
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FAST GRADIENT DESCENT FOR CONVEX MINIMIZATION PROBLEMS 1089
Theorem 1. Let , where  is the initial point,  be the closest minimizer to the point  in
the sense of the Bregman divergence, and

For the proposed algorithm, it holds that

Proof. Let us sum the inequality in Lemma 2 over :

Take  to obtain

Since , we have

Divide both sides by :

Using the convexity of , we finally obtain

Inequality  follows from Remark 1 and the fact that .

3. THE FAST GRADIENT METHOD WITH AN ORACLE USING THE (δ, L)-MODEL
Consider the fast version of the algorithm described in Section 2.

Algorithm
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.
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(10)

(11)

If it holds that

(12)

then set

and to the next step; otherwise, set

and repeat the current step.
Lemma 3. Let the sequence  satisfy the conditions

where  for every  (Remark 1). Then, the following inequality holds for every :

(13)

Proof. Let , i.e.,

and

Let ; then

We solve this quadratic equation and take its greatest root. Then
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and
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Proof. Consider the chain of inequalities

Inequality  follows from the equality . Inequality  follows from Lemma 1 with
 and the left-hand side of (4).

Theorem 2. Let , where  is the initial point, and let  be the closest minimizer to  in the
sense of the Bregman divergence. For the proposed algorithm, the following inequality holds:

Proof. Sum the inequality in Lemma 4 over  to obtain

Set . Then, we have

Divide both parts of this inequality by  to obtain

Inequality  follows from Lemma 3.
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4. CONSEQUENCES
4.1. The Fast Gradient Method

Assume that  is a smooth convex function with an -Lipschitzian gradient in the norm . Then
(see [11]),

(14)

Thus, we obtain that , , and  . In addition, we assume
that the auxiliary problem can be solved exactly, i.e.,  . Hence, we obtain the following conver-
gence rate for the fast version of the method (Section 3 and Theorem 2):

This convergence rate is optimal up to a numerical factor (the constant cannot be less than two
(see [6]), and we have the constant 8).

4.2. Comparison of the Gradient and Fast Gradient Methods

Assume that there is a -oracle for problem (2) (see [11]), and assume that the auxiliary problem
in the sense of Definition 4 can be solved at each step with an error not exceeding . Then, due to Theo-
rems 1 and 2, it holds that

where  is the point mentioned in Theorem 1 and  is the point mentioned in Theorem 2. We conclude
that the fast version is more stable to the errors  of solving the auxiliary problems; however, this version
accumulates the errors  occurring when the -oracle is called. Note that there is an intermediate gra-
dient method [13] (for the stochastic case, [14]) for which the following bound can be obtained:

here  can be chosen arbitrarily, and the proper choice can reduce the noise, which, however, dete-
riorates the bound on the convergence rate.

4.3. The Universal Method

Consider the fast version of the gradient method (Section 3 and Theorem 2).
The universal method described in [15] makes it possible to apply the concept of -oracle (see [11,

15]) for solving nonsmooth problems. We assume that the Hölder condition holds, i.e., there exists a
 such that

Then (see [15]),
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and  is a free parameter. We obtain  and . Assume that the
auxiliary problem can be solved exactly, i.e.,  for every . Set

(16)

where  is the desired accuracy of solution (with respect to the function).
Theorem 2 and the assumptions made above imply the convergence rate

(17)

As in [15], we can prove the inequality

Hence, we conclude that

This bound is optimal up to a numerical factor [16].

4.4. The Conditional Gradient Method
In practice, the auxiliary problem (10) cannot be solved in reasonable time [5, 17]. It was shown in [18]

that the Frank–Wolfe conditional gradient method [5, 18, 19] can be very effective for a certain class of
problems. For this reason, instead of ,  is
used in (10). Consider this replacement from the viewpoint of the error . Below, we assume that  is
a smooth function with -Lipschitzian gradient in the norm  and  for all . Further-

more, let . Then

In the algorithm, we assume that  for each . The further reasoning is similar to the smooth
case with an -Lipschitzian gradient in the norm . Then, we obtain the following convergence rate for
the fast version of the method (Section 3 and Theorem 2):

This bound is optimal up to a numerical factor—it cannot be improved for the method under examina-
tion (see [20]).

4.5. Composite Optimization
Consider the composite optimization problem [3]

(18)

where  is a smooth function with the -Lipschitzian gradient in the norm  and  is a convex
function (not necessarily smooth). For this problem we have the inequality
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Therefore, we may use ,  and  for each .
It turns out that the ordinary and fast versions of the method in this problem work without any changes.
Note that we thus move a part of the problem complexity to (7) or (10). While the auxiliary problem
in the smooth case includes the function , the term  is added
in problem (18), and we therefore must solve at each step the more difficult problem

.

4.6. The Prox-Method

Consider the problem

(20)

where  is generally a nonsmooth convex function. In the approach described above, we can set
,  and  for each . Condition (4) holds for any . The

methods described in Sections 2 and 3 are, generally speaking, adaptive in the sense that the “local” Lip-
schitz constant  of the gradient is fitted during the method operation. Let us fix an arbitrary constant

 and set all  equal to  rather than fitting them in the inner loop. In this case, it is easy to verify
that the method and all the bounds do not change. Then, the intermediate step of the method in Section 2 is
written as

(21)

This is called the proximal method (see [20, 21]). It can be effective in certain problems (see [22]). For
nonsmooth functions, the algorithm described in Section 3 converges due to bounds proved in Theorem 2,
which contradicts the lower bounds for nonsmooth functions (see [1, 2]). However, problem (21) can gen-
erally be solved only approximately (see [23, 24]). A more detailed analysis in [10] shows that the total
number of oracle calls for obtaining the subgradient of the function  does not contradict the lower
bounds in [1, 2] for nonsmooth problems and even agrees with them.

4.7. Superposition of Functions

Consider the problem (see [25–27])

(22)

where  is a smooth function with the -Lipschitzian gradient in the norm  for every k and  is
an -Lipschitzian convex function with respect to the -norm that is nondecreasing in each of its argu-
ments. Consequently (see [26, 28]),  is a convex function as well, and it holds that (see [26])

Moreover, we have

We may set , , and
 for each . As in problem (18), the estimates of the convergence rate remain the same, but the aux-

iliary problems (7) and (10) can become significantly more complicated. This problem can include a large
number of specific cases (see [25, 26]), such as smooth optimization, nonsmooth optimization, minimax
problem [1], composite optimization, and the problem with regularization.
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4.8. Additional Examples
Consider without going into details additional examples of problem statements in which the concept

of the model of function introduced in Section 2 can be useful.
1. Consider the following minimin problem [29]

(23)

Let  be a smooth function and

Then (see [30]), if there exists a  such that

then

and

is a -model of the function  at the point .
Thus, we obtain a -model that can be used for solving problem (23).
2. Consider the problem of finding the saddle point [29]

(24)

where  is -strongly convex with respect to the -norm, . Then, as was shown in [11],
 is a smooth function with the Lipschitz constant of the gradient in the 2-norm

If  is the solution of the auxiliary maximization problem accurate to  with respect to the function,
then the pair

is a -model of  at the point .
3. Consider the function (cf. (21))

(25)

Let  be a convex function and

Then (see [11]), it holds that

is a -model of the function  at the point .

5. CONCLUSIONS
We presented the gradient and fast gradient methods for the -model. Algorithms developed for

these methods and estimates of the convergence rates were obtained. In Section 4, it was shown that these
methods provide a powerful tool for solving a large class of problems. Note that the problems listed in Sec-
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tion 4 do not exhaust the potential capabilities of the proposed concept. We believe that this approach can
be used in many other problems, including stochastic, component-wise, and gradient free optimization
[31]. Furthermore, it can be shown that the algorithms proposed in this paper are primal-dual [32].
Details will be presented in further studies.

APPENDIX
In this paper, we essentially used the fact that we are solving the auxiliary problem with an error not

exceeding  using the concept of Definition 4. It was shown that the -solution in the sense of Definition 4
implies the -optimal solution. The converse is generally not true; however, we try to give fairly general
examples in which the converse result holds. The trivial case is . In this case, the first-order optimal-
ity criterion implies that these two definitions of -solution are equivalent.

Assume that the following problem is being solved:
(26)

where  is a convex function and  is a strongly convex function with the strong convexity con-
stant equal to one. The auxiliary problem in the iterations of optimization methods often has this form.
Certainly, there are cases in which this problem can be solved analytically, e.g., when the main problem is

the smooth optimization without constraints and with the Euclidean prox-structure .
If problem (26) can be solved only numerically, then various approaches depending on the problem can
be used.

Consider the case when

Under this condition, problem (26) is separable. Therefore, it is sufficient to solve  one-dimensional

problems each of which can be solved using the bisection method [33] in time , where  is the
error with respect to the function.

If we additionally assume that  has an -Lipschitzian gradient in the norm , then two
approaches can be used. If  has an -Lipschitzian gradient in the norm , then the problem can

be solved in linear time  [1]. If  does not have an -Lipschitzian gradient in the norm ,

then  in problem (26) can be considered as a composite one. In this case, in order to obtain a linear
convergence rate, the restart technique [14, 34] can be used.
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